Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Logarithmusfunktionen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben

Die Spannung beim Entladen eines Kondensators über einen Widerstand wird durch die Formel u(t) = U_0 \cdot e^{-\frac{t}{\tau}} beschrieben. Für die Zeitkonstante gilt \tau= R\cdot C . Wie groß ist C, wenn R =10k \Omega beträgt und die Spannung u(t) nach 100 ms auf 5% des Maximalwerts abgefallen ist?

Nr. 1448
Lösungsweg

5 erreichbare Punkte

Welche der folgenden Eigenschaften hat die Funktion /$ log_4(x) ?

Nr. 455
Lösungsweg

4 erreichbare Punkte

Um das Alter von Tierskeletten zu bestimmen, verwendet man die C14 Datierung. C14 ist radioaktiv und zerfällt mit einer Halbwertszeit von = 5760 Jahren. Leiten Sie den Zusammenhang zwischen der Zerfallskonstanten \lambda und der Halbwertszeit her.  Wie alt ist ein Tierskelett, wenn sein heutiger C14– Anteil nur noch 6,8 Promille beträgt?

Nr. 1429
Lösungsweg

5 erreichbare Punkte

Das Wachstum einer Bakterienkultur werde für einen bestimmten Zeitraum als exponentiell angenommen. Nach drei Tagen sind 250 000 Bakterien, nach fünf Tagen 750 000 Bakterien vorhanden. Wann werden 106 Bakterien vorhanden sein?

Nr. 1428
Lösungsweg

5 erreichbare Punkte

Die Verzinsung eines Anfangskapitals K erfolgt mit einem Zinsfuß von p % p.a. D.h. wird ein Anfangskapital K zu Jahresbeginn eingelegt, so werden die Zinsen immer nach einem Jahr auf das Kapital aufgeschlagen. ( Die KEST soll bereits berücksichtigt sein.) Das Guthaben G wächst somit nach n Jahren an auf: G(n) = K \cdot \left(1+ \frac{p}{100}\right)^n

Wie groß ist ein Guthaben nach 5 Jahren, wenn ein Anfangskapital von 50 000€ mit 3,5% verzinst wird und jeweils zu Jahresbeginn immer 3000€ abgehoben werden? Insgesamt erfolgen 5 Behebungen.

Nr. 1457
Lösungsweg

5 erreichbare Punkte

Jemand legt ein Kapital K auf ein Sparbuch. Nach fünf Jahren ist das Kapital auf 60 220 € und nach weiteren fünf Jahren auf 80 588 € angewachsen. Wie groß ist der Zinsfuß p und welcher Betrag wurde ursprünglich eingelegt? ( Ganzjährige Kapitalisierung vorausgesetzt.)

Nr. 1442
Lösungsweg

5 erreichbare Punkte

Der Holzbestand eines Waldes wächst erfahrungsgemäß um 3,8% pro Jahr. Heute beträgt der Holzbestand 7200m^3 Man hat vor, in drei Jahren 2000m^3 zu roden. Wann wird dieser Wald den heutigen Holzbestand wieder erreichen?

Nr. 1441
Lösungsweg

5 erreichbare Punkte

Ein Patient nimmt ein Medikament ein, dessen „ biologische Halbwertszeit “ acht Stunden beträgt. Der Patient nimmt um 9°° eine Dosis von 10mg des Medikaments , um 13°°  4mg und um 18°° 8mg zu sich. Bedenkt man, dass die Formel n(t)= 2^{-\frac{t}{8}} \cdot (10 \cdot \sigma (t) + 4 \cdot 2^{\frac{4}{8}} \cdot \sigma (t-4)+8 \cdot 2^{\frac{9}{8}} \cdot \sigma (t-9)) die zeitliche Abhängigkeit der wirksamen Substanz beschreibt - wann im Zeitabschnitt zwischen 13°° und 18°° beträgt die wirksame Substanz 9mg?

Nr. 1465
Lösungsweg

5 erreichbare Punkte


NEWS

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die nächsten Qualifikationskurse starten im Februar 2018. Informationen zu dem generallen Ablauf und Kontakt finden Sie auf unserer Website.

weitere News

Wussten Sie schon?

Wenn Sie einen Benutzer haben, vergessen Sie nicht, sich rechts oben anzumelden. Nur dann wird Ihr Lernfortschritt gespeichert.