Übungstest

Dieser Übungstest besteht aus 8 Fragen zu Stetige Verteilungen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben (Kann je nach Länge einige Minuten dauern)

Sei X eine stetige Zufallsvariable. Welche Ausssagen sind (unter gewissen Voraussetzungen) korrekt?

Nr. 4575
Lösungsweg

4 erreichbare Punkte

Seien X und Y zwei normalverteilte Zufallsvariable. Dann ist ihre Summe X+Y

Nr. 4601
Lösungsweg

4 erreichbare Punkte

Die Lebensdauer eines radioaktiven \(C_{14}\) Kohlenstoffisotops ist eine Zufallsvariable T mit Verteilungsfunktion

\(F(t)= 1-e^{-0.00012t}\)  (für \(t>0\) )

 

Bestimmen Sie die Dichtefunktion f(t).

Nr. 3753
Lösungsweg

3 erreichbare Punkte

Ein Unternehmen hat Kunden in verschiedenen Altersgruppen. 10% der Kunden fallen in Altersgruppe A1, 60% in A2 und 30% in A3. Kunden dieser drei Altersgruppen wurden nach einem neuen Produkt befragt. Laut Umfrage würden 70% der Altersgruppe A1, 50% der Altersgruppe A2 und 40% der Altersgruppe A3 das neue Produkt kaufen.
Wie groß ist die Wahrscheinlichkeit, dass ein beliebiger Kunde Käufer des neuen Produkts wird?

Nr. 3749
Lösungsweg

4 erreichbare Punkte

Die Reaktionszeit von Autofahrern kann als normalverteilt angenommen werden. Angenommen, der Erwartungswert beträgt 0,8 Sekunden und die Standardabweichung 0,06 Sekunden.
Über welchem Wert liegt die Reaktionszeit mit 98%-iger Wahrscheinlichkeit?

Nr. 3759
Lösungsweg

4 erreichbare Punkte

Die Lebensdauer eines radioaktiven \(C_{14}\) Kohlenstoffisotops ist eine Zufallsvariable T mit Verteilungsfunktion

\(F(t)= 1-e^{-0.00012t}\)  (für \(t>0\) )

Bestimmen Sie die Halbwertszeit von \(^{14}C\), also die Zeit \(t_{\frac{1}{2}}\) für die \(F( t_{\frac{1}{2}})=0,5\). gilt

Nr. 3752
Lösungsweg

4 erreichbare Punkte

Gegeben sei eine stetige Zufallsvariable X, die im Intervall [0;6] gleichverteilt ist. Bestimmen Sie die Verteilungsfunktion F(x) im Bereich 0<x<6!

Nr. 4563
Lösungsweg

4 erreichbare Punkte

Sie werfen n verschiedene Würfel und addieren die Augensumme X aller Würfel nach jedem Wurf. Welche Verteilung hat X für große n?

Nr. 4603
Lösungsweg

4 erreichbare Punkte


NEWS

Derzeit kommt es beim Rendern der Formeln leider zu einem Problem. Wir sind bemüht das Problem zu lösen.

Auch in diesem Semester für alle FHTW Studierenen wieder verfügbar: Der Mathe-Support

Mathematik lernen ist eine Herausforderung, vor allem im Eigenstudium! Sie tun sich schwer beim Lesen von mathematischen Skripten oder kommen bei den Übungsaufgaben nicht weiter? Vielleicht wollen Sie auch einfach nicht alleine, sondern lieber in einer Gruppe lernen? Dann kommen Sie zum Mathe-Support!

https://www.technikum-wien.at/mathe-support/

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule.

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News