Fragenliste von Skalarprodukt

Berechnen Sie das Skalarprodukt der Vektoren a und b

\vec a =
 \begin{pmatrix}
 2\\
 -4\\
0
\end{pmatrix}

  \vec b = \begin{pmatrix}
3\\
2\\
5
\end{pmatrix}

Nr. 2107
Lösungsweg

Berechnen Sie das Skalarprodukt der Vektoren a und b

\vec a = \begin{pmatrix}
1\\
 5\\
1
\end{pmatrix} , \vec b = \begin{pmatrix}
 4\\
2\\
1
\end{pmatrix}

Nr. 2108
Lösungsweg

Berechnen Sie das Skalarprodukt der Vektoren a und b

\vec a = \begin{pmatrix}
2\\
 3\\
3
\end{pmatrix}   \vec b = \begin{pmatrix}
 -4\\
-1\\
1
\end{pmatrix}

Nr. 2333
Lösungsweg

Berechnen Sie das Skalarprodukt der Vektoren a und b

\vec a =
 \begin{pmatrix}
 -2\\
 0\\
9
\end{pmatrix}

  \vec b = \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}

Nr. 2335

Berechnen Sie den Winkel \gamma zwischen den Vektoren \vec v_1= \begin{pmatrix}
 2\\
 -1\\
1
\end{pmatrix} und \vec v_2= \begin{pmatrix}
 1\\
 2\\
-2
\end{pmatrix}

Nr. 2348
Lösungsweg

Berechnen Sie den Winkel \gamma zwischen den beiden Vektoren 

\vec v_1= \begin{pmatrix}
 -1\\
 3\\
2
\end{pmatrix} und \vec v_2= \begin{pmatrix}
 2\\
 1\\
4
\end{pmatrix}

Nr. 2349
Lösungsweg

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(25|13|4), B=(11|5|10), C=(20|0|-25)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2513
Lösungsweg

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(2|1|0), B=(2|-3|-4)C=(1|-1|-2)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2514

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(-1|1|2), B=(-2|2|4)C=(0|3|4)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2515

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(4|2|1), B=(13|6|5)C=(7|8|2)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2516

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(-2|-1|1), B=(-5|2|4)C=(-1|1|3)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2517
Lösungsweg

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(-1|1|2), B=(2|1|5)C=(1|-1|3)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2518

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(1|2|3), B=(4|5|3)C=(3|3|5)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2519

Bei welchem Eckpunkt liegt der rechte Winkel des angegebenen Dreiecks ABC?

A=(4|-1|2), B=(7|-3|-4)C=(-5|7|14)

Hinweis: Verwende das Orthogonalitätskriterium: Zwei Vektoren stehen auf einander normal, wenn ihr Skalarprodukt 0 beträgt.

Nr. 2520

Berechne das Skalarprodukt:

\begin{pmatrix}1\\2\\-5\end{pmatrix}\cdot\begin{pmatrix}4\\5\\0\end{pmatrix}

Nr. 2521

Berechne das Skalarprodukt:

\begin{pmatrix}2\\-3\\-4\end{pmatrix}\cdot\begin{pmatrix}4\\-2\\4\end{pmatrix}

Nr. 2522

Berechne das Skalarprodukt:

\begin{pmatrix}4\\1\\4\end{pmatrix}\cdot\begin{pmatrix}2\\4\\1\end{pmatrix}

Nr. 2523

Berechne das Skalarprodukt:

\begin{pmatrix}5\\-2\\-3\end{pmatrix}\cdot\begin{pmatrix}1\\0\\1\end{pmatrix}

Nr. 2524

Berechne das Skalarprodukt:

\begin{pmatrix}1\\2\\5\end{pmatrix}\cdot\begin{pmatrix}-2\\-3\\2\end{pmatrix}

Nr. 2525

Berechne das Skalarprodukt:

\begin{pmatrix}3\\9\\3\end{pmatrix}\cdot\begin{pmatrix}2\\1\\-5\end{pmatrix}

Nr. 2526

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}1\\2\\-5\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}4\\5\\z\end{pmatrix}

Nr. 2527
Lösungsweg

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}2\\-3\\-4\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}4\\y\\4\end{pmatrix}

Nr. 2528
Lösungsweg

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}4\\1\\4\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}x\\4\\1\end{pmatrix}

Nr. 2529
Lösungsweg

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}x\\-2\\-3\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}1\\0\\1\end{pmatrix}

Nr. 2530
Lösungsweg

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}1\\1\\5\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}-2\\-3\\z\end{pmatrix}

Nr. 2531

Welcher Wert muss für die fehlende Komponente eingesetzt werden, damit die beiden Vektor orthogonal (normal) aufeinander stehen?

\begin{pmatrix}3\\9\\z\end{pmatrix}\ ,\ \ \ \ \ \begin{pmatrix}2\\1\\-5\end{pmatrix}

Nr. 2532

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}1\\3\\2\end{pmatrix}, \vec a=\begin{pmatrix}5\\2\\8\end{pmatrix}

Nr. 2533
Lösungsweg

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}1\\-3\\2\end{pmatrix}\vec a=\begin{pmatrix}5\\2\\11\end{pmatrix}

Nr. 2534
Lösungsweg

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}-2\\1\\0\end{pmatrix}\vec a=\begin{pmatrix}4\\0\\11\end{pmatrix}

Nr. 2535
Lösungsweg

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}5\\2\\3\end{pmatrix}\vec a=\begin{pmatrix}15\\6\\9\end{pmatrix}

Nr. 2536
Lösungsweg

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}4\\2\\2\end{pmatrix}\vec a=\begin{pmatrix}3\\1\\3\end{pmatrix}

Nr. 2537
Lösungsweg

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}-7\\-4\\5\end{pmatrix}\vec a=\begin{pmatrix}4\\1\\3\end{pmatrix}

Nr. 2538
Lösungsweg

Bestimmen Sie die Parameter u  und  v  so, dass der Vektor \vec c sowohl zu \vec a als auch zu \vec b orthogonal ist und zwar unter ausschliesslicher Verwendung des Skalarprodukts.

\vec a = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} , \vec b = \begin{pmatrix} -2 \\ 14 \\ 1 \end{pmatrix} , \vec c = \begin{pmatrix} u \\ 1 \\ v \end{pmatrix}

Nr. 3013
Lösungsweg

Bilden Sie mit den Vektoren

\vec a = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} , \vec b = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}\vec c = \begin{pmatrix} 4 \\ 5 \\ 1 \end{pmatrix}

das folgende Produkt (Spatprodukt):

(\vec a \times \vec c) \cdot \vec b

Nr. 3015

NEWS

Die Mathe Plattform des Technikum Wien gewinnt den eLearning Award 2019 als Projekt des Jahres in der Kategorie Hochschule. 

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

weitere News

Wussten Sie schon?

Wenn Sie einen Benutzer haben, vergessen Sie nicht, sich rechts oben anzumelden. Nur dann wird Ihr Lernfortschritt gespeichert.