Übungstest

Dieser Übungstest besteht aus 8 Fragen zu 6 Bereichen.
Die Schwierigkeitsstufe ist leicht bis schwer.
Es können bei jeder Frage eine oder mehrere Antworten korrekt sein, aber nie alle.

Test als PDF ausgeben

Welcher Vektor ist hier abgebildet?

Nr. 2337

4 erreichbare Punkte

Berechne das Skalarprodukt:

\begin{pmatrix}2\\-3\\-4\end{pmatrix}\cdot\begin{pmatrix}4\\-2\\4\end{pmatrix}

Nr. 2522

5 erreichbare Punkte

Die Punkte A, B, C bilden eine Ebene. Finden Sie einen Vektor \vec n, der normal auf diese Ebene steht.

A = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}  , B = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}  ,  C = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}

Nr. 3010
Lösungsweg

5 erreichbare Punkte

Berechnen Sie (A^2 + B^2) :

A =\begin{pmatrix} 1 & -1 & 2 \\  0 & 1 & 2 \\  2 & 0 & -1 \end{pmatrix} ,  B=\begin{pmatrix} 2 & 0 & 3 \\  1 & 2 & 3 \\  3 & 4 & 1 \end{pmatrix}

Nr. 3027

3 erreichbare Punkte

Welchen Vektor erhält man wenn man den abgebildeten Vektor mit 2 multipliziert?

Nr. 2343

3 erreichbare Punkte

Welcher Vektor ist hier dargestellt?

Nr. 2339

4 erreichbare Punkte

Vektorprojektion/Normalprojektion

Projeziere mit Hilfe des Skalarprodukts \vec b auf \vec a.

\vec b = \begin{pmatrix}-2\\1\\0\end{pmatrix}\vec a=\begin{pmatrix}4\\0\\11\end{pmatrix}

Nr. 2535
Lösungsweg

5 erreichbare Punkte

Berechnen Sie die Fläche des von \vec a und \vec b aufgespannten Parallelogramms mit Hilfe des Kreuzprodukts

\vec a = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}  \vec b = \begin{pmatrix} 1 \\ -2\\ 0\end{pmatrix}

Nr. 2354
Lösungsweg

5 erreichbare Punkte


NEWS

Die Plattform wächst! Wir bauen im Moment den Bereich des Studienwissens aus. Bitte haben Sie Verständnis, dass die Inhalte dort erst nach und nach ergänzt werden. Ebenso kann es bei Design und Grafik noch zu Änderungen, Verbesserungen und kleinen Bugs kommen. Danke für Ihr Verständnis!

Festigen Sie Ihre Grundkenntnisse und bereiten Sie sich auf Prüfungen vor.
Im Juli starten wieder die Warm-up Kurse - ein kostenloser Service für Aufgenommene und Studierende der FHTW.


Mathematik, Physik, Elektrotechnik, Informatik, Englisch und Deutsch in kompakten Kursen, geblockt bis September.

Anmeldung und Informationen
Warm-up-Kurse

Die nächsten Qualifikationskurse starten im Februar 2018. Informationen zu dem generallen Ablauf und Kontakt finden Sie auf unserer Website.

weitere News

Wussten Sie schon?

Sie können sich rechts oben einen kostenlosen Benutzer erstellen. Dann wird Ihr Lernfortschritt gespeichert, Sie können Tests zwischenspeichern und an Tutorien teilnehmen.